Dane są punkty A = (1,1), B = (3,4). Współczynnik kierunkowy symetralnej odcinka Sławek.: Dane są punkty A = (1,1), B = (3,4). Współczynnik kierunkowy symetralnej odcinka AB jest równy? Jak to policzyć? Robię układ równań z obiema prostymi, pod które podstawiam powyższe punkty. Każdy ułamek zwykły ma następującą postać: l i c z n i k m i a n o w n i k. Ułamek zwykły składa się więc z trzech elementów: licznik – liczba na górze ułamka (nad kreską ułamkową) kreska ułamkowa – czyli linia, która oddziela nam licznik od mianownika. mianownik – liczba na dole ułamka (pod kreską ułamkową) 4. Dane są trzy niewspółliniowe punkty kratowe A,B,Cukładu współrzęd-nych, takie że długość każdego z odcinków AB,BC,CAjest liczbą całkowitą. Znaleźć najmniejszą możliwą długość odcinka AB. 5. Znaleźć wszystkie liczby pierwsze ptakie, że liczba p2 −p+ 1 jest sze-ścianem liczby całkowitej. 6. r / 1 .4 4 . Dane są dwie f unkcje liniowe: f(x)~ 2x+ 5 oraz g(x) = x - 4. a) Oblicz, dla jakich argumentów f unkcja/ przyjmuje wart ości większe niż f unkcja g. b) Oblicz, dla jakich argument ów f unkcje/ oraz g przyjmują jednocześnie wart ości ujemne. Dane są punkty a = (-6, -4) i b = (6, 12). Punkt b jest środkiem odcinka ac, a punkt d jest środkiem odcinka bc. P P F F 700 dan otnici liczby vo liczba 7 Dane są punkty A= (-1,-1) i B : (3, 2). Odcinek AB ma długość? 2009-03-22 21:38:46; Dane są trzy punkty B, U, K, które NIE LEŻĄ na jednej prostej. Ile prostych możesz poprowadzić przez te punkty? 2012-11-19 19:35:31; dane są trzy punkty,które nieleżą na jednrj prostej ile prostych możesz przeprowadzić przez te punkty? 2010-10-18 Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Udowodnij, że dla dowolnych różnych liczb rzeczywistych \(x\), \(y\) prawdziwa jest nierówność: \[x^2y^2+2x^2+2y^2-8xy+4\gt 0\] W trójkącie ostrokątnym \(ABC\) bok \(AB\) ma długość \(c\), długość boku \(BC\) jest równa \(a\) oraz \(|\sphericalangle ABC|=\beta \). Dane są trzy niewspółliniowe punkty: A = (1, 1), B = (6, 2), C = (4,5). Ile jest wszystkich punktów D takich, że czworokąt o wierzchołkach w punktach A, B, C AB = [−5,4], a B(1,−3). IV.29 Dane są punkt A = (−2,3) i wektor ⃗a = [3,4]. Znajdź współrzędne takiego punktu B, dla którego: a) −−→ AB =⃗a b) −−→ AB = −⃗a c) −−→ AB = 2⃗a d) 2 −−→ AB =⃗a IV.30 Dane są punkty A = (1,2), B = (3,6). Znajdź punkt C taki, dla którego: a) −−→ AB = −−→ BC HVfb. Długość odcinka o końcach w punktach \(A=(x_1,y_1)\) oraz \(B=(x_2,y_2)\) wyraża się wzorem: \[|AB|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\] Wzór na długość odcinka można wyprowadzić z twierdzenia Pitagorasa dla trójkąta prostokątnego \(ABC\): \[\begin{split} |AB|^2&=|AC|^2+|BC|^2\\[6pt] |AB|&=\sqrt{|AC|^2+|BC|^2}\\[6pt] |AB|&=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \end{split}\] Dane są punkty \(P=(-2,-2)\), \(Q=(3,3)\). Odległość punktu \(P\) od punktu \(Q\) jest równa A.\( 1 \) B.\( 5 \) C.\( 5\sqrt{2} \) D.\( 2\sqrt{5} \) CDługość odcinka \( AB \), którego wierzchołki mają współrzędne \( A=(-3,-2) \) i \( B=(-1,4) \), jest równa A.\(2\sqrt{5} \) B.\(2\sqrt{10} \) C.\(4\sqrt{2} \) D.\(\sqrt{41} \) BDane są punkty \(A=(1,-4)\) i \(B=(2,3)\). Odcinek \(AB\) ma długość A.\( 1 \) B.\( 4\sqrt{3} \) C.\( 5\sqrt{2} \) D.\( 7 \) CNa okręgu o środku \(S=(-6,1)\) leży punkt \(A=(-2,4)\). Promień tego okręgu jest równy A.\(5\) B.\(7\) C.\(\sqrt{73}\) D.\(\sqrt{7}\) APunkty \(B = (−2, 4)\) i \(C = (5, 1)\) są dwoma sąsiednimi wierzchołkami kwadratu \(ABCD\). Pole tego kwadratu jest równe A.\( 74 \) B.\( 58 \) C.\( 40 \) D.\( 29 \) BPunkty \( A=(-1,3)\) i \(C=(7,9) \) są przeciwległymi wierzchołkami prostokąta \( ABCD \). Promień okręgu opisanego na tym prostokącie jest równy A.\(10 \) B.\(6\sqrt{2} \) C.\(5 \) D.\(3\sqrt{2} \) CPunkty \(A=(1,-2)\), \(C=(4,2)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Wysokość tego trójkąta jest równa A.\( \frac{5\sqrt{3}}{2} \) B.\( \frac{5\sqrt{3}}{3} \) C.\( \frac{5\sqrt{3}}{6} \) D.\( \frac{5\sqrt{3}}{9} \) APunkty \(A=(-3,-1)\), \(B=(2,5)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Pole tego trójkąta jest równe A.\( \frac{\sqrt{183}}{2} \) B.\( \frac{61\sqrt{3}}{2} \) C.\( \frac{61\sqrt{3}}{4} \) D.\( \frac{11\sqrt{3}}{4} \) CPunkty \(B=(0,0)\), \(C=(3,0)\) są dwoma wierzchołkami trójkąta równobocznego \(ABC\). Obwód tego trójkąta jest równy A.\( 3 \) B.\( 9 \) C.\( \frac{3\sqrt{3}}{2} \) D.\( \frac{9\sqrt{3}}{4} \) BPunkty \( A=(-1,2) \) i \( B=(2,6) \) są wierzchołkami kwadratu \( ABCD \). Pole tego kwadratu jest równe: A.\(17 \) B.\(65 \) C.\(25 \) D.\(7 \) CDany jest okrąg o środku \(S=(−6,−8)\) i promieniu \(2014\). Obrazem tego okręgu w symetrii osiowej względem osi \(Oy\) jest okrąg o środku w punkcie \(S_1\). Odległość między punktami \(S\) i \(S_1\) jest równa A.\( 12 \) B.\( 16 \) C.\( 2014 \) D.\( 4028 \) APunkty \(E = (7,1)\) i \(F = (9,7)\) to środki boków, odpowiednio \(AB\) i \(BC\) kwadratu \(ABCD\). Przekątna tego kwadratu ma długość A.\( 4\sqrt{5} \) B.\( 10 \) C.\( 4\sqrt{10} \) D.\( 20 \) C Dane są punkty \(M=(3,-5)\) oraz \(N=(-1,7)\). Prosta przechodząca przez te punkty ma równanie A.\( y=-3x+4 \) B.\( y=3x-4 \) C.\( y=-\frac{1}{3}x+4 \) D.\( y=3x+4 \) Dane są trzy punkty: A=(1,-4) B=(7,2) C=(4,-8) Napisz:równanie prostej AB, symetralnej AB, rów klima: Dane są trzy punkty: A=(1,-4) B=(7,2) C=(4,-8) Napisz:równanie prostej AB, symetralnej AB, równoległej do AB i przechodzącej przez C, oblicz pole i obwód trójkąta ABC. 26 lut 00:45 Eta: Rozwiązuję! 26 lut 02:00 Eta: Sporo pisania! ( już nie mam siły A napiszę Ci: ( to proste zadanko tylko z wzorów skorzystać równanie prostej AB: (y- yA)(xA -xB) = (x -xA)( yA -yB) podstawiasz współrzedne A i B AB:(y +4)( 1 -7)= (x -1) ( -4 -2) AB: (y+4)(-8) = (x -1)( -6) AB: y = x - 5 współcz. a= 1 symetralna to prosta prostopadła do i przechodząca przez środek odcinka AB środek odcinka AB to S( xs,ys) gdzie xs = ( xA +xB)/2 ys = (yA +yB)/2 więc ; xs = 4 ys= - 1 to S( 4, -1) sym. AB ma równanie a= -1 y - yS = -1( x-xS) sym. AB: y - 4 = -(x +1) to y= -x +3 Prosta równoległa do AB i przechodząca przez C ma równanie: a = 1 czyli y-yC = 1( x -xC) y +8 = ( x- 4) czyli ; y= x - 12 pole trójkata liczymy ze wzoru: → → P= 1/2Id( AB, AC)I → gdzie AB = [ 6,6] → to P= 1/2*I -24 - 18I = 1/2 * 42 = 21 [j2] AC = [ 3, -4] P= 21 [j2] obwód to I ABI + IACI +IBCI IABI = √36 +36 = 6√2 IACI = √ 9+ 16 = √25 = 5 IBCI= √9 + 100 = √109 √2 + √109 [j] .html">Ob = 5 + 4√2 + √109 [j] Sprawdzaj rachunki ! jest już tak późno ,że mogłam sie poylić! Sposób obliczania prawidłowy! Dobranoc! 26 lut 02:22 mateusz: dziekuję 26 lut 14:08 Eta: OK 26 lut 14:09 m: a prostej prostopadłej przechodzącą przez pkt c? było by miło. 25 mar 19:20 a) A(7, 2), B(3,-1)c) A(-4,-7), B(1,5)b) A(0, -3), B(-1,0) d) A(-5, 3), B(0, -2)Chcę dostęp do Akademii!

dane są trzy punkty a 7 4